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Fall 2012 November 30, 2012

Problem Set 9
In this final problem set of the quarter, you will explore the limits of what can be computed effi-
ciently.  What problems do we believe are computationally intractable?  What do they look like? 
And are they purely theoretical, or might you might bump into one some day?

As always, please feel free to drop by office hours or send us emails if you have any questions. 
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 5% of your total grade (note that this is 
slightly less than usual).

Good luck, and have fun!

Due Friday, December 7th at 2:15 PM



2 

Problem One: The Long Path Problem (20 Points)

Given an undirected graph G = (V, E), a simple path in a G is a path between two nodes u, v  ∈ V 
such that no node is repeated on the path.  For example, given this graph:
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A → C → E is a simple path from A to E, but A → B → E → C → A → D is not a simple path  
because node A is visited twice.*

Consider the following language:

       ULONGPATH = { ⟨G, u, v, k  |⟩ G is an undirected graph, 
u and v are nodes in the graph, and 
there exists a simple path from u to v containing k nodes. }

For example, if G is the above graph, then ⟨G, D, F, 6   ⟩ ∈ ULONGPATH because there is a simple 
path of six nodes from D to F (namely, D→A→C→E→B→F), but ⟨G, A, C, 5   ⟩ ∉ ULONGPATH 
because there is no simple path of 5 nodes from A to C.

i. Prove that ULONGPATH  ∈ NP by designing a polynomial-time verifier for it.  Prove your 
verifier is correct by proving there is some x such that ⟨G,  u,  v,  k   ⟩ ∈ ULONGPATH iff 
your verifier accepts ⟨G, u, v, k, x .  However, you can just give an informal justification⟩  
as to why your verifier runs in polynomial time.

In an undirected graph G = (V, E), a Hamiltonian path is a simple path between two nodes u and v 
that visits every node in the graph exactly once.  For example, in this graph:
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The path F → B → E → C → A → D is a Hamiltonian path from F to D, but F → B → E → D is 
not (because it doesn't visit every node), nor is F → B → E → D → A → C → E → D (because it  
is not a simple path).

* Although we have defined a path in a graph as a series of edges, it is often easier to reason about the path as the 
series of nodes that it passes through.  Throughout this problem set, we will adopt this convention.
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The language UHAMPATH is defined as follows:

  UHAMPATH = {⟨G, u, v  | ⟩ G is an undirected graph and
                                                                       there is a Hamiltonian path from u to v.}

UHAMPATH is known to be NP-complete by a fairly clever series of reductions from SAT; see 
Sipser, page 291 (second edition) or page 319 (third edition) for more details.

ii. Prove that ULONGPATH  ∈ NPC by showing that UHAMPATH ≤P ULONGPATH.  Prove 
your reduction is correct (i.e., ⟨G, u, v   ⟩ ∈ UHAMPATH iff f(⟨G, u, v, )  ⟩ ∈ ULONGPATH), 
but feel free to justify informally why your reduction works in polynomial time.

Problem Two: 4-Colorability (35 Points)

If you'll recall, an undirected graph G is called 3-colorable iff there exists a way to color each the 
nodes in G one of three colors such that no two nodes of the same color are connected by an edge. 
We formalized the 3-coloring problem as a language as follows:

3COLOR = { ⟨G  | ⟩ G is an undirected, 3-colorable graph }

As we saw in lecture, 3COLOR is NP-complete.

An undirected graph is called 4-colorable iff there is a way to color each of the nodes in G one of 
four colors so that no two nodes of the same color are connected by an edge.  We can formalize 
the 4-coloring problem as a language as follows:

4COLOR = { ⟨G  | ⟩ G is an undirected, 4-colorable graph }

Note that every 3-colorable graph is also 4-colorable, but not all 4-colorable graphs are 3-col-
orable.  In other words, 3-colorability is a stricter requirement than 4-colorability.  However, it is 
still the case that 4COLOR is NP-complete, and in this problem you will prove this result.

i. Prove that 4COLOR  ∈ NP by designing a polynomial-time NTM for it.  Prove that your 
NTM is correct, then justify informally why it runs in polynomial time.

ii. Prove that 4COLOR is NP-hard by proving 3COLOR ≤P 4COLOR.  That is, show how to 
take an arbitrary graph G and construct (in polynomial time) a graph G' such that graph G 
is 3-colorable iff graph G' is 4-colorable.

For simplicity, you do not need to formally prove that your reduction is correct and runs in 
polynomial time.  Instead, briefly answer each of the following questions about your re-
duction (two or three sentences apiece should be sufficient):

1. If the original graph G is 3-colorable, why is your new graph G' 4-colorable?

2. If your new graph G' is 4-colorable, why is the original graph G 3-colorable?

3. Why can your reduction be computed in polynomial time?
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Problem Three: Resolving P ≟ NP (30 Points)

This problem explores the question 

What would it take to prove whether or not P = NP? 

For each statement below, decide whether the statement would definitely prove P = NP, definitely 
prove P ≠ NP, or would do neither.  Write “P = NP,” “P ≠ NP,” or “neither” as your answer to 
each question.  Please don't just write “true” or “false.”  No justification is necessary.

1. There is a P language that can be decided in polynomial time.

2. There is an NP language that can be decided in polynomial time.

3. There is an NP-complete language that can be decided in polynomial time.

4. There is an NP-hard language that can be decided in polynomial time.

5. There is an NP language that cannot be decided in polynomial time.

6. There is an NP-complete language that cannot be decided in polynomial time.

7. There is an NP-hard language that cannot be decided in polynomial time.

8. There is some NP-complete language that can be decided in O(2n) time.

9. There is no NP-complete language that can be decided in O(2n) time.

10. There is a polynomial-time verifier for every language in NP.

11. There is a polynomial-time decider for every language in NP.

12. There is a language L  ∈ P where L ≤P 3SAT.

13. There is a language L  ∈ NP where L ≤P 3SAT.

14. There is a language L  ∈ NPC where L ≤P 3SAT.

15. There is a language L  ∈ P where 3SAT ≤P L.

16. There is a language L  ∈ P where 3SAT ≤M L.

17. All languages in P are decidable.

18. All languages in NP are decidable.

19. There is a polynomial-time algorithm that correctly decides SAT for all strings of length at  
most 10100, but that might give incorrect answers for longer strings.

20. There is a polynomial-time algorithm that correctly decides SAT for all strings of length at  
least 10100, but that might give incorrect answers for shorter strings.
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Problem Four: The Big Picture (35 Points)

We have covered a lot of ground in this course throughout our whirlwind tour of computability 
and complexity theory.  This last question surveys what we have covered so far by asking you to 
see how everything we have covered relates. 

Take a minute to review the hierarchy of languages we explored: 

REG  ⊂ DCFL  ⊂ CFL  ⊂ P  ⊆ NP  ⊂ R  ⊂ RE  ⊂ ALL 

The following questions ask you to provide examples of languages at different spots within this 
hierarchy.  In each case, you should provide an example of a language, but you don't need to for-
mally prove that it has the properties required.  Instead, describe a proof technique you could use 
to show that the language has the required properties.  There are many correct answers to these 
problems, and we'll accept any of them. 

i. Give an example of a regular language.  How might you prove that it is regular? 

ii. Give an example of a context-free language is not regular.  How might you prove that it is 
context-free?  How might you prove that it is not regular? 

iii. Give an example of a language in P that is not context-free.  How might you prove that it 
is in P?  How might you prove that it is not context-free? 

iv. Give an example of a language in NP suspected not to be in P.  How might you prove that 
it is in NP?  Why do we think that it is not contained in P? 

v. Give an example of a language in RE not contained in R.  How might you prove that it is 
RE?  How might you prove that it is not contained in R? 

vi. Give an example of a language in co-RE not contained in R.  How might you prove that it 
is co-RE?  How might you prove that it is not contained in R? 

vii. Give an example of a language that is neither RE nor co-RE.  How might you prove it is 
not contained in RE?  How might you prove it is not contained in co-RE?

Problem Five: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how 
we're doing.  For a free five points, please answer the following questions.  We'll give you full 
credit no matter what you write (as long as you write something!), but we'd appreciate it if you're 
honest about how we're doing.

i. If we should keep any one thing about this course the same in future offerings, what 
would it be? 

ii. If you could change any one thing about this course, what would it be? 

iii. What topic did you think was the most interesting?  What topic did you think was 
the least interesting?
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Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest 
way to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the 
handout hangout in the Gates building.  If you haven't been there before, it's right inside 
the entrance labeled “Stanford Engineering Venture Fund Laboratories.”  There will be a 
clearly-labeled filing cabinet where you can submit your solutions.

3. Send an email  with an electronic copy of your answers to the submission mailing list 
(cs103-aut1213-submissions@lists.stanford.edu) with the string “[PS9]” somewhere in the 
subject line.  If you do submit electronically, please submit your assignment as a single 
PDF if at all possible.  Sending multiple files makes it harder to print out and grade your 
submission.

Extra Credit Problem: P ≟ NP (Worth an A+, $1,000,000, and a Stanford Ph.D)

Prove or disprove: P = NP.

mailto:cs103-aut1213-submissions@lists.stanford.edu

